

PHENOTYPIC SCREENING

Phenotypic assays explore the behavioral responses of physiologically relevant cell types, including stem cells, 3-D cultures, and organoid cultures, at the whole-cell level. This strategy is particularly efficient at identifying chemicals and conditions that globally modulate a cell's behavior. Typically, this involves looking at disease- or stimulus-driven biological responses, followed by target deconvolution, to identify the molecular target. However, due to phenotypic screening's reliance on optical analysis, accurate and reproducible cellular imaging is an absolute requirement for consistent, quantifiable data.

Multiparametric phenotypic profiling enables the simultaneous analysis of a variety of phenotypic changes (mRNA, protein, morphology, etc.) in response to the addition of agents of known composition, providing key insights into cellular behavior. This offers the many benefits of high-throughput analysis, although, the level of throughput is negatively correlated with the ability to multiplex.¹

HCA (high-content analysis) combines high-throughput, automated imaging with analysis to extract data at the single-cell level. From 3-D microtissue imaging and live-cell imaging to protein-protein interactions, this cutting-edge technology has a myriad of applications.

NOTYPICO SCREENING

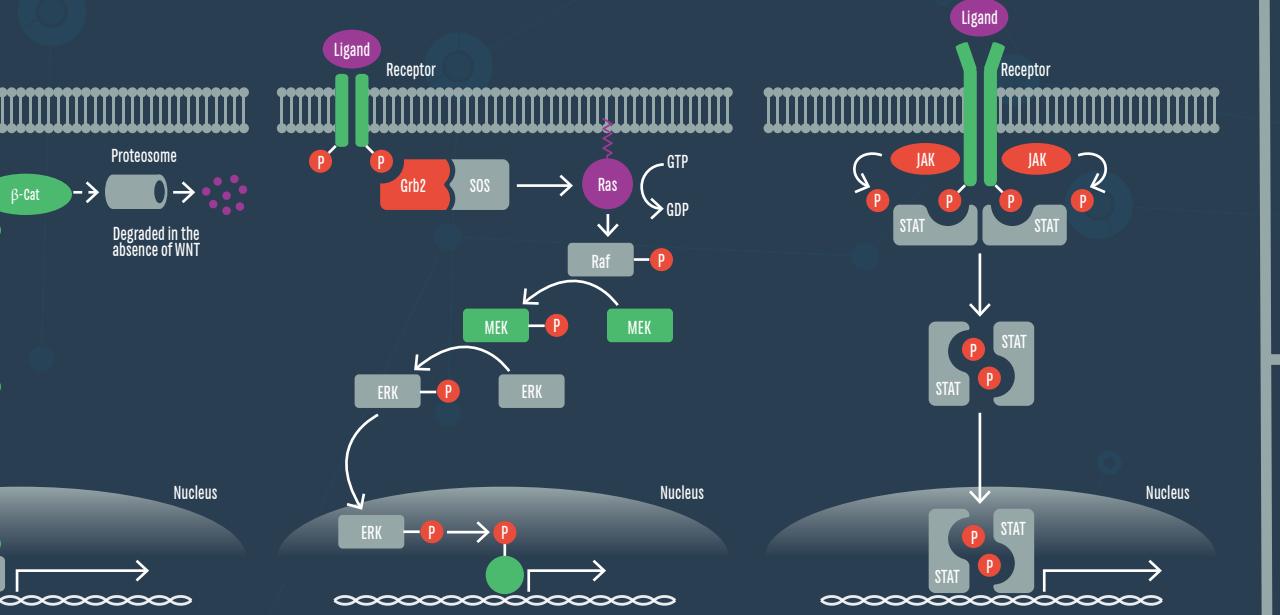
GET-BASED SCREENING

CELL SIGNALING PATHWAY ANALYSIS

FROM PROTEIN TO PHENOTYPE

aling is an elaborate, dynamic, and interactive system of
tracellular communication, responsible for governing and
ting activities, from the basic to the complex. Amidst
e intricate signaling pathways and their effector
molecules, these complex interactions
require detailed analyses to parse
the pathways and unlock
the unknown.

The diagram illustrates a signaling pathway. At the top, a green oval labeled 'β-Cat' has a downward-pointing arrow. This arrow points to a grey rectangular box labeled 'TCF/LEF' at the bottom. The 'TCF/LEF' box is positioned above a wavy line representing a membrane or cytosolic boundary.


WNT G

MAP K SIGNA L

68

STAT LING

MAPK signaling is regulation of cellular homeostasis, including proliferation, differentiation, and survival of cells. MAPK signaling is assessed by quantifying phosphorylation (such as ERK) by Western blot, proximity assays. Additionally, it is a useful tool to study cell migration and cell proliferation.

JAK/STAT signaling controls expression of genes associated with migration, proliferation, apoptosis, oncogenesis. Changes in STAT levels can be detected and quantified using assays including Western blot, ELISA, and no-wash proximity assa

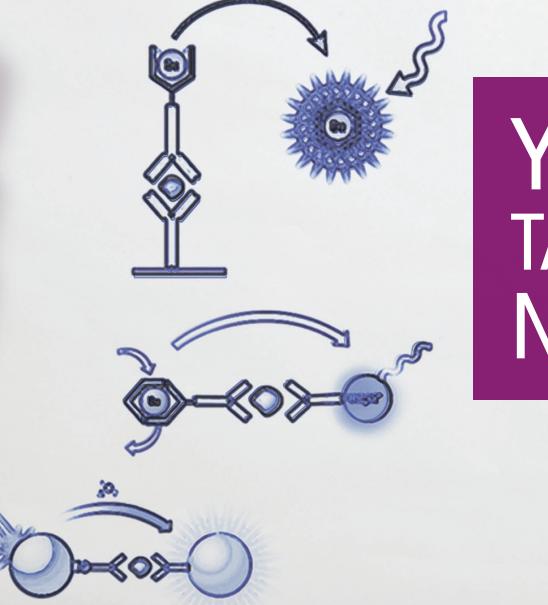
Target-based screening is a directed methodology that measures the effect of selected compounds on a target protein or nucleic acid sequence via biochemical or cell-based *in vitro* assays. This approach delivers a high level of precision and is well suited to high-throughput screening (HTS), however, the narrow scope of target-based screening may limit new discovery and overlook modulators that globally regulate related signaling networks not under investigation.

TARGET-BASED SCREENING

Western blots detect changes in protein expression or modification. While this technology typically looks at a population of cells, new technologies have facilitated the analysis of protein changes on a deeper, single-cell level.²

ELISAs (enzyme-linked immunosorbent assays) are useful tools for detecting and quantifying a protein of interest. ELISAs are highly quantitative and generally reproducible, however, their dynamic range is narrow in relation to other technologies, like multiplex assays.³

No-wash proximity assays, including bead-based, amplified luminescent proximity assays, and TR-FRET (time-resolved fluorescence resonance energy transfer), are considered to be superior to conventional ELISAs because of their high sensitivity, ease of use, ability to be miniaturized, and wide dynamic range, which make them ideal assays for HTS. Not only are these robust technologies useful for antibody-based assays, but they can also be applied to protein-protein and protein-DNA/RNA interaction assays.


IHC (immunohistochemistry) characterizes the subcellular distribution and localization of pathway-signaling partners and differentially expressed proteins, allowing researchers to identify deleterious aberrations present in diseased or abnormal cells.

Copyright © 2016 PerkinElmer, Inc. 40351_05. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

HUMAN HEALTH
ENVIRONMENTAL HEALTH

What We Need in an Assay

- Rapid access to biologically relevant information
- Ready-to-use kits with simple protocols
- Miniaturizable, automation friendly
- Fully validated, reliable results

YOUR HOTTEST TARGETS ARE OUR NEWEST ASSAYS

Copyright © 2016 PerkinElmer, Inc. 40352_03. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

**Custom publishing from:
TheScientist
EXPLORING LIFE, INSPIRING INNOVATION**

**EXPLORING UNCHARTED INTERACTIONS WITH
CELL SIGNALING PATHWAY ANALYSIS
FROM PROTEIN TO PHENOTYPE**

PerkinElmer's commitment to scientific innovation is at the heart of everything we do. It is why our customers turn to us to help them unlock critical insights that make impacts: smarter decisions, earlier diagnoses, more effective treatments and scientific breakthroughs. We serve as a true strategic partner, first understanding customers' most pressing business challenges and then developing innovations to meet those needs, or working collaboratively with customers to jointly discover breakthroughs. With our over 3,300 patents and counting, global network of R&D centers of excellence and market-leading detection, imaging, and informatics innovations, PerkinElmer provides an unmatched experience that enables customers to better protect our environment, food supply and health of our families. To deepen the understanding of disease processes and accelerate the research that ultimately improves human health, PerkinElmer provides a range of solutions for high content imaging and analysis, and phenotypic screening of live cells, 3-D cell models, stem cells.

Find out more at: perkinelmer.com/lab-solutions

PHENOTYPIC SCREENING

TARGET-BASED SCREENING

Sponsored by:

PerkinElmer *For the Better*

From assay to analysis to service and support, this is cell signaling that gets you outstanding results.

So where are the breakthrough discoveries in cell signaling coming from? From lab to market, we're maximizing high-quality results while minimizing hassles, and we're taking a global approach to glean more biologically relevant information. And we're making breakthroughs, with complete assay solutions. Innovative technologies such as DELFI, LANCE, Alpha, AlphaScreen, SureFire, and radiometric assays, with more coming every day. And a range of highly reliable, high-performance multimode plate readers, such as the EnVision® and EnSight® systems, for a wide choice of detection technologies. It's everything you need to bring about the next big breakthrough. Get the signal!

For more information visit www.perkinelmer.com/cellsignaling

PerkinElmer *For the Better*